Machine Learning Verification

Brian Hyeongseok Kim brian.hs.kim@usc.edu

CSCI 698, Fall 2025

Software

is everywhere

Software

is everywhere

```
int max(int a, int b) {
   int result;
   if (a > b)
      result = a;
   else
      result = a; // BUG: should be b
   return result;
}
```

Testing and Verification

Does φ hold for some given input?

$$\max(5,2) = 5$$

$$\max(10, -3) = 10$$

$$\max(0, -10) = 0$$

All pass...?

Software

is everywhere

```
int max(int a, int b) {
    int result;
    if (a > b)
        result = a;
    else
        result = a; // BUG: should be b
    return result;
}
```

Testing and Verification

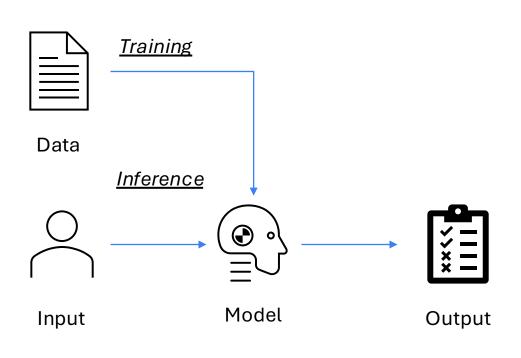
Does φ hold for all inputs?

INVARIANT: assert(result >= a && result >= b)

Violated!

Machine Learning is everywhere

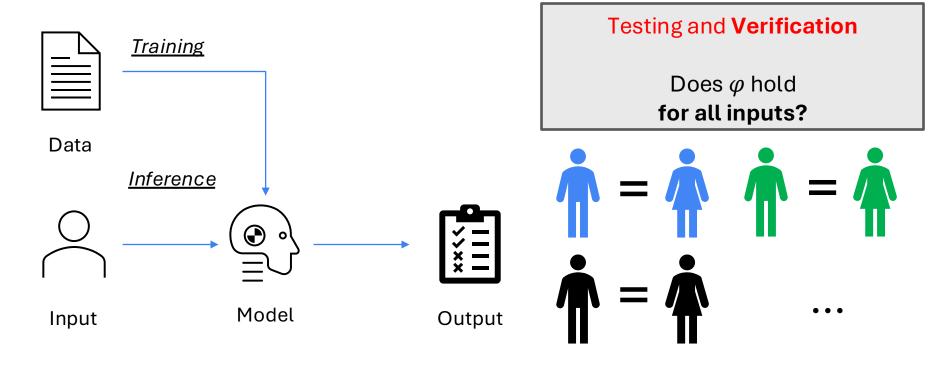
Machine Learning is everywhere



Testing and Verification

Does φ hold for some given input?

Machine Learning is everywhere



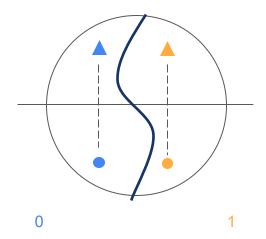
Possible definitions of $oldsymbol{arphi}$

Non-exhaustive:

- 1. Counterfactual Fairness
- 2. Epsilon Fairness
- 3. Local Robustness
- 4. Global Robustness

Counterfactual Fairness

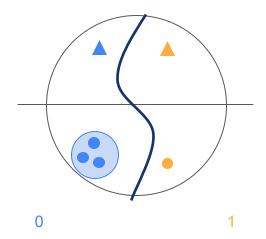
Definition 2 (Individual Fairness for the Input Domain): Given a classifier f, an input domain X, and a protected attribute $j \in \mathcal{P}$, we say that f is individually fair for the input domain X if and only if, for all $x \in X$, f(x) = f(x') holds for any $x' \in X$ that differs from x only in the protected attribute x_j .



No (x, x') pair for the entire domain, but with different protected attributes can have different labels

Epsilon Fairness

Definition 2 (ϵ -Fairness). For an input x, the classification output M(x) is fair if, for any input x' such that (1) $x_j \neq x'_j$ for some $j \in \mathcal{P}$ and (2) $|x_i - x'_i| \leq \epsilon$ for all $i \notin \mathcal{P}$, we have M(x) = M(x').

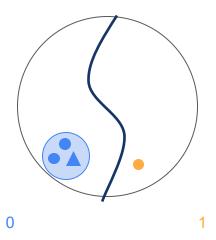


No (x, x') pair within epsilon distance **for a given x**, **but with same protected attribute** can have different labels

Local Robustness

Definition 1. (Local Robustness) A model, F, is ϵ -locally-robust at point, x, with respect to norm, $||\cdot||$, if $\forall x'$,

$$||x-x'|| \le \epsilon \implies F(x) = F(x').$$



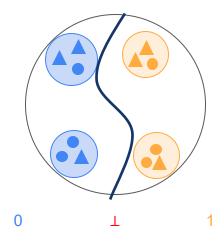
No (x, x') pair within epsilon distance **for a given x** can have different labels

Global Robustness

Definition 2. (Global Robustness) A model, F, is ϵ -globally-robust, with respect to norm, $||\cdot||$, if $\forall x_1, x_2$,

$$||x_1-x_2|| \le \epsilon \implies F(x_1) \stackrel{\perp}{=} F(x_2).$$

 $c1 \perp = c2$ if $(c1=\perp) \mid \mid (c2=\perp) \mid \mid (c1=c2)$, where \perp labels "not locally robust" points along the margin



No (x1, x2) pair within epsilon distance **for the entire domain** can have both 0 and 1 labels

Conclusion

- Difference between testing and verification
- Why we need verification for machine learning models
- Various popular properties related to fairness and robustness
- Motivating examples