

Analyzing Fairness of Neural Network Prediction via Counterfactual Dataset Generation

Brian Hyeongseok Kim, Jacqueline L. Mitchell, and Chao Wang
brian.hs.kim@usc.edu

University of Southern California

Are your model's predictions driven by biased training labels?

The Problem

Existing fairness tools only look at the model **after** it's trained.

- Counterfactual Explanations: What if we change the *test inputs*?
- Fairness Testing: Can we find *test inputs* that the model treats unfairly?

Our Question

What if the **training data** itself was slightly different? → Dataset bias [1,2]

- We don't blame the model; we blame the training **labels** it learned from.
- Existing methods [1-3] are neither applicable nor scalable to neural networks.

Counterfactual Datasets (CFDs)

Concept

Find the closest **alternate training dataset** where the model learns differently and treats the given test input differently.

- **Action:** Flip a few training labels ($\leq m$)
- **Result:** The prediction for the test case changes ($y \neq y'$)

Strategies

We can't possibly try every possible alternate training dataset...

- **Training Stage: Linear Regression Surrogate**
→ estimates influence of training labels to the test input
- **Inference Stage: Neuron Activation Similarity**
→ finds training examples the model treats similarly to the test input

Key Results

1. It's Effective

Finds nearly all ground-truth counterfactuals, substantially outperforming baselines

2. It's Efficient

Scales to large datasets with negligible time overhead compared to baselines

3. It's Meaningful

Identifies training examples that actually look like the test subject (semantically similar)

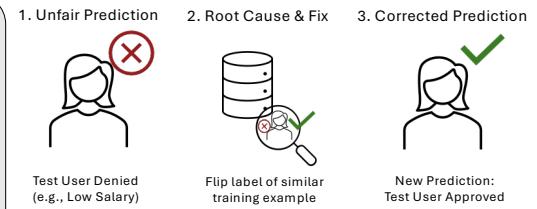
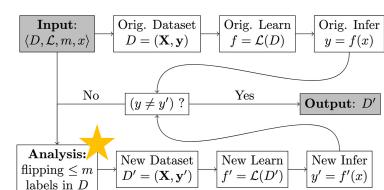
4. It's Robust

Successfully finds counterfactuals even for "hard cases" far from the decision boundary

Main Takeaway

Don't just audit the model—
audit the data.

We pinpoint which **training labels** may be driving **unfair predictions**.



Algorithm 1 Generating counterfactual dataset.★

```

1: Input: dataset  $D = (X, y)$ , learning algorithm  $L$ , bias budget  $m$ , test input  $x$ , filtering rules  $\phi$  and  $\psi$ 
2: Output: counterfactual dataset  $D' = (X, y')$ 
3:  $f \leftarrow L(D); y \leftarrow f(x)$  (original model & prediction)
4: if not  $\phi(x)$  then
5:   return  $\{x \text{ does not pass filtering by } \phi\}$ 
6: end if
7:  $y_L \leftarrow \text{LR.SCORING}(X, y, x, m)$  {Section 4.3}
8:  $y_A \leftarrow \text{ACTIV.SCORING}(X, x, f)$  {Section 4.4}
9:  $[y_1, \dots, y_{n_\psi}] \leftarrow \text{COMBINE.SCORING}(y_L, y_A, \psi)$  { $n_\psi$  = size of training set after filtering by  $\psi$ }
```

One-Time Upfront Cost:
Heavy computation happens **before** the retraining loop.

Dual-Stage Scoring:
Two heuristics to capture influence of both **Training** (LR) and **Inference** (Activ.)

Dataset	#	Our Method	Random Sampling	L_2 Distance
Salary	10	3/3*	1	3
Student	121	20/24*	13	10
German	182	38/38*	17	15
Compas	200	27	10	5
Default	200	18	5	8
Bank	200	24	9	11
Adult	200	44	15	15
Total	1,113	174	70	67

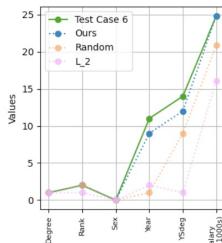
Table 1. Number of CFDs found by each method.

* indicates number of ground truth CFDs via exhaustive enumeration.

Dataset	Our Method	Random Sampling	L_2 Distance
Salary	0.04	0.00	0.01
Student	0.07	0.02	0.03
German	0.08	0.02	0.04
Compas	0.28	0.12	0.24
Default	2.91	1.52	4.32
Bank	3.22	1.72	5.04
Adult	5.73	3.26	9.35

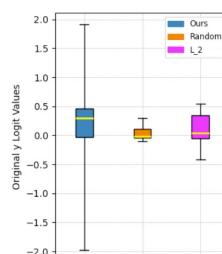
Table 2. Average non-training overhead (seconds) per test case

Influence Functions: 2+ hour
Our Method: <1 ~ 5 sec



(a) Salary Test Case 6

Figure 3. Identified training examples against test case



(b) Default

Figure 4. Test cases around the decision boundary

Project Links

Open
Review
.net

Brian Hyeongseok Kim

