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/ ' . . \ 1. Unfair Prediction 2. Root Cause & Fix 3. Corrected Prediction
Are your model's predictions \/
driven by biased training labels? Q@ @

The Problem m
Existing fairness tools only look at the model after it’s trained.
e Counterfactual Explanations: What if we change the test inputs? Test User Denied Flip label of similar New Prediction:

q Q . . . (e.g., Low Salary) training example Test User Approved
* Fairness Testing : Can we find test inputs that the model treats unfairly?

Figure 1. The Counterfactual Dataset Concept.
Instead of forcing the user to change their features to get a fair

ou r Question result, we fix the source of the problem by identifying and flipping
. .. . . . . the label of specific, influential training examples (Step 2).
What if the training data itself was slightly different? - Dataset bias [1,2] This allows the new model to treat the test user fairly (Step 3).
* We don't blame the model; we blame the training labels it learned from.
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Find the closest alternate training dataset where the model learns Figure 2. Overall pipeline to efficiently g 2 CFD D’
differently and treats the given test input differently.
* Action: Flip a few training labels (< m) Algorithm 1 Generating counterfactual dataset.
* Result: The prediction for the test case changes (y # y’) 1 Input: dataset D = (X, ), lescuing algorithim £, biss

budget m, test input x, filtering rules ¢ and
Output: counterfactual dataset D' = (X,y’)
feLD)ye fx)  {orig & prediction}
if not ¢(x) then

return {x does not pass filtering by phi}
end if
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{ny = size of training set after filtering by ¥}

Strategies
We can’t possibly try every possible alternate training dataset...
* Training Stage: Linear Regression Surrogate

- estimates influence of training labels to the test input
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One-Time Upfront Cost:

* |Inference Stage' Neuron Activation S,m/lar’ty Heavy computation happens before the retraining loop.
- finds training examples the model treats similarly to the test input Dual-Stage Scoring:
\ Two heuristics to capture influence of both Training (LR) and Inference (Activ.)
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Table 1. Number of CFDs found by each method. (b) Salary Test Case 6
’ . *indicates number of ground truth CFDs via exhaustive enumeration.
3. It’s Meanlngful Figure 3. Identified training

examples against test case

Identifies training examples that actually look
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Don't just audit the model— Influence (d) Default
audit the data Functions: [ OurMethod: Figure 4. Test cases around
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We pinpoint which training labels
may be driving unfair predictions. Project Links Brian Hyeongseok Kim
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