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Fairness in Machine Learning
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Counterfactual Explanation (Inference)
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Counterfactual Explanation (Training + Inference)
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Counterfactual Dataset (CFD)
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Counterfactual Dataset (CFD)
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Counterfactual Dataset (CFD)

Naive enumeration? Alternate Datasets
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Overview

Input: Orig. Dataset Orig. Learn Orig. Infer
(D, L, m,z) D=(X,y) f=L(D) y = f(z)
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Overview

Input: Orig. Dataset Orig. Learn Orig. Infer
(D, L, m,z) D=(X,y) f=L(D) y = f(z)
Al (y#1vy') 7 e Output: D’
ﬂAn.alysis: New Dataset New Learn New Infer
PPINE =T D= (X,y) [ f = LD [y = F(@)
labels in D

Our analysis: Rank the impact of training examples in D for the given x
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Methodology

Linear Regression Surrogate

Neuron Activation Similarity
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Methodology: Linear Regression

[1] Meyer et al., “The Dataset Multiplicity Problem: How Unreliable Data Impacts
Predictions”. FAccT 2023.

Bypass training via a closed-form solution:

f=X"X)"'X"y

Prediction using closed-form solution:

n
d = acti _
roa T aee y=0"x=x"X"X)"' X"y =zy = E 2iY;
1=1
with ReLU activation function:

- n training examples are sorted in
01 x, x€D decreasing order of their z; score

f(x) =

-
0,x, x€D,
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Methodology: Neuron Activation
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Sim(x,x’) =1 —

test input x and training input x’
b.(-) €{0, 1} > 0 for inactive, 1 for active

red = active

n training examples are sorted in
How similar are the test input and the increasing order of their Sim score
training example in terms of activation?
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Methodology: Overall

Algorithm 1 Generating counterfactual dataset.

1: Input: dataset D = (X,y), learning algorithm L, bias
budget m, test input x, filtering rules ¢ and

2: Output: counterfactual dataset D' = (X,y’)
3: f+ L(D); y+ f(x) {original model & prediction}
4: if not ¢(x) then Input: Orig. Dataset Orig. Learn Orig. Infer
5: return {x does not pass filtering by phi} (D, L, m,z) 1 D= (X,y) 1 f=L(D) ] y = f(x)
6: end if
7: yr < LR_ScoriNnG(X,y,x,m) {Section 4.3} /\J
8: ya < ACTIV_SCORING (X, x, f) {Section 4.4} 1
9: [y1,--.,Yn,,| < COMBINE_SCORING(Y [,y A,¥) No , Yes -
{1/7)11# = size of training set after filtering by 1} y#y)? it D
10: K+ 1
11: while k < m do m
12: y/ /(— label fet where y1,...,y, in y are flipped ﬂAnalySiS: New Dataset New Learn New Infer
13: D' +— (X,y) ipping < m —1 1 _ N g1 NI, g1
14:  f'+ L(D"); ¢y + f'(x) {new model & prediction} labels in D D'=&Xy) f'= L) y = f=)
15:  if y #4y then
16: return D’ {CFD solution found}
17: else
18: k+—k+1 {flip more labels in next iteration}
19: end if
20: end while
21: return {solution not found}
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Results: Experimental Setup

Datasets
- 7 popular fairness benchmarks
Salary, Student, German, Compas, Default, Bank, Adult

Network training
- PyTorch using Adam optimizer
- RelLU networks with 2x4 to 2x32 hidden neurons

Comparing baselines
- Random sampling and L,distance
- Influence functions [1-5] are not considered due to their limited scalability

[1] Deng et al., “dattri: a library for efficient data attribution”. NeurlPS 2024.

[2] Koh and Liang. “Understanding black-box predictions via influence functions”. ICML 2017.

[3] Martens. “Deep learning via Hessian-free optimization”. ICML 2010.

[4] Agarwal et al., “Second-order stochastic optimization for machine learning in linear time”. JMLR 2017.
[5] Schioppa et al., “Scaling Up Influence Functions”. AAAI 2022

USC Viterbi

School of Engineering NLDL 2026: Tuesday, January 6, 2026 13 [,]11i\'c1‘5it}’ of Southern California




Results: Research Questions

)

RQ1: Is it effective? RQ2: Is it efficient?

0

RQ3: Is it meaningful? RQ4: Is it robust?
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Results: RQ1

Dataset Our Random
Method Sampling Dlstance

o~ Salary 3/3*
(a1t} Student 121 20/24* 13 10
\—/ German 182 38/38* 17 15
RQ1: Is it effective? cempEs [ 200 27 10 °
Default 200 18 5 8
Bank 200 24 9 11
Adult

Table 1. Number of CFDs found by each method.
*indicates number of ground truth CFDs via exhaustive enumeration.
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Results: RQ2

Our Method | Random Sampling| L, Distance |

Salary 0.04
Student 0.07
German 0.08
Compas 0.28
Default 2.91
Bank 3.22
Adult 5.73

0.00
0.02
0.02
0.12
1.52
1.72
3.26

0.01
0.03
0.04
0.24
4.32
5.04
9.35

Table 2. Average non-training overhead per test input (in seconds).

e e
RQ2:1s itefficient: Our Method | Random Sampling| __ L, Distance

Salary 0.35
Student 4.19
German 2.33
Compas 14.83
Default 133.82

Bank 123.53

Adult 195.81

0.31
4.35
2.56
17.03
134.34
143.85
206.90

0.32
4.52
2.62
17.18
122.55
142.38
206.32

Table 3. Average runtime including retraining per test input (in seconds).
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Training examples identified by each method against the test case
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Conclusion

1. Novel method to analyze neural network fairness using counterfactual datasets

2. Two heuristics to measure training example impact:
linear regression surrogate (training) and neuron activation similarity (inference)

3. Evaluate on diverse fairness datasets: effective, efficient, meaningful, and robust

Thank You!
. Brian Hyeongseok Kim
PrOject LinkS Any QueStlonS? brian.hS.kim@USC.edu

USC Viterbi

School of Engineering NLDL 2026: Tuesday, January 6, 2026 19 [,]11i\'crsity of Southern California



mailto:brian.hs.kim@usc.edu

