

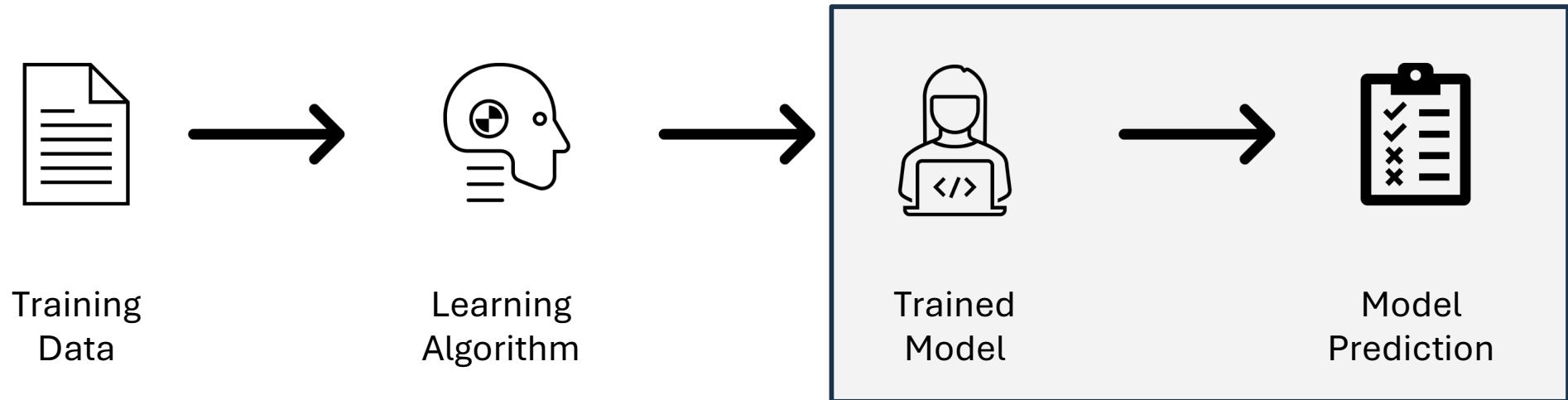


Analyzing Fairness of Neural Network Prediction via Counterfactual Dataset Generation

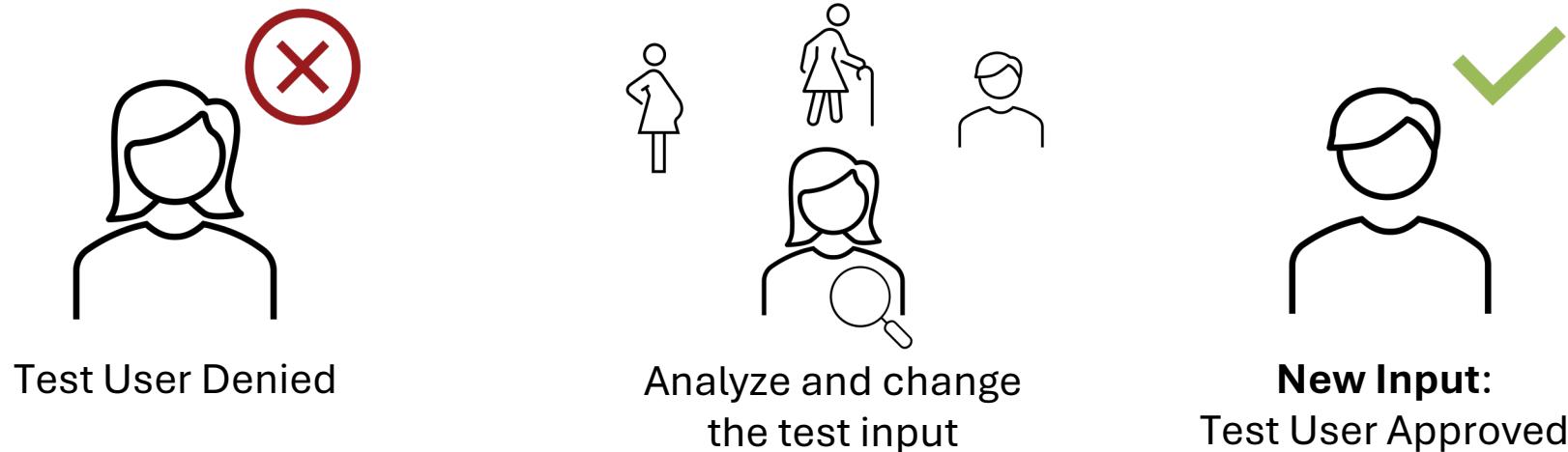
Brian Hyeongseok Kim, Jacqueline L. Mitchell, and Chao Wang

Fairness in Machine Learning

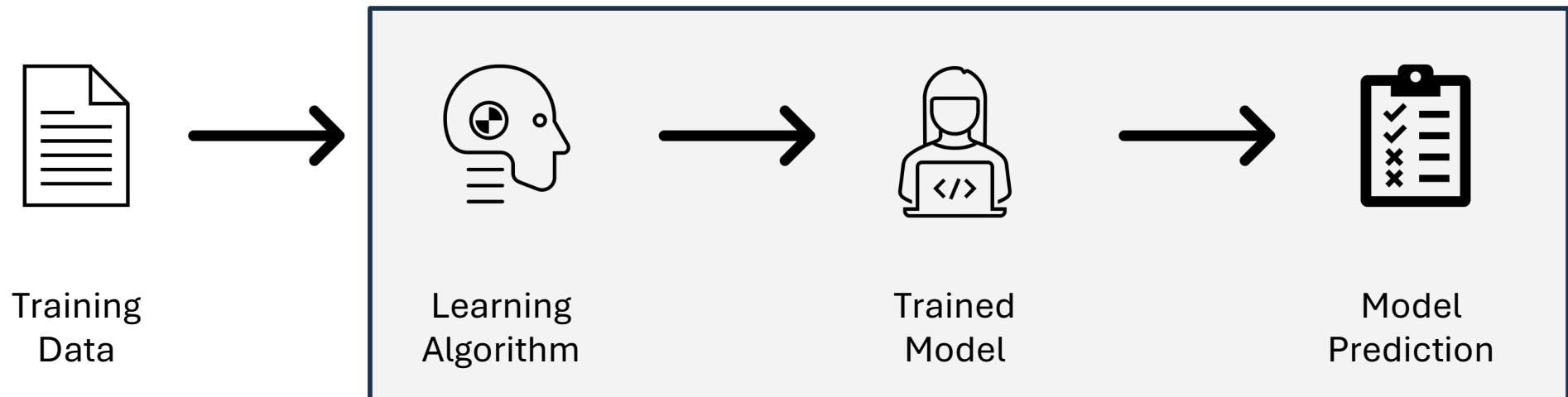
Counterfactual Explanation (Inference)



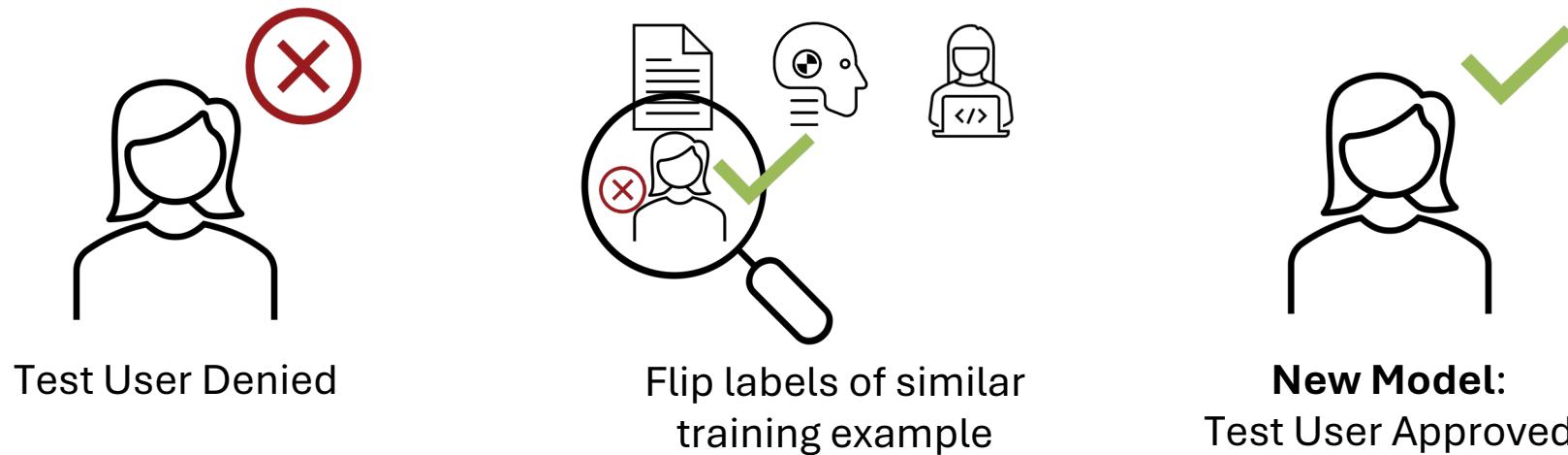
What if we change the **test inputs** counterfactually?



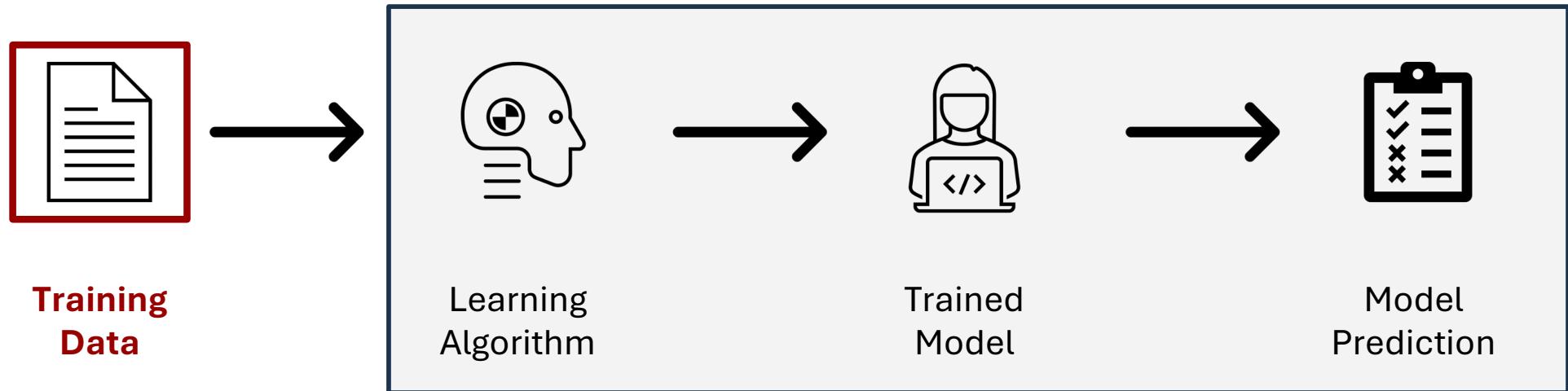
Counterfactual Explanation (Training + Inference)



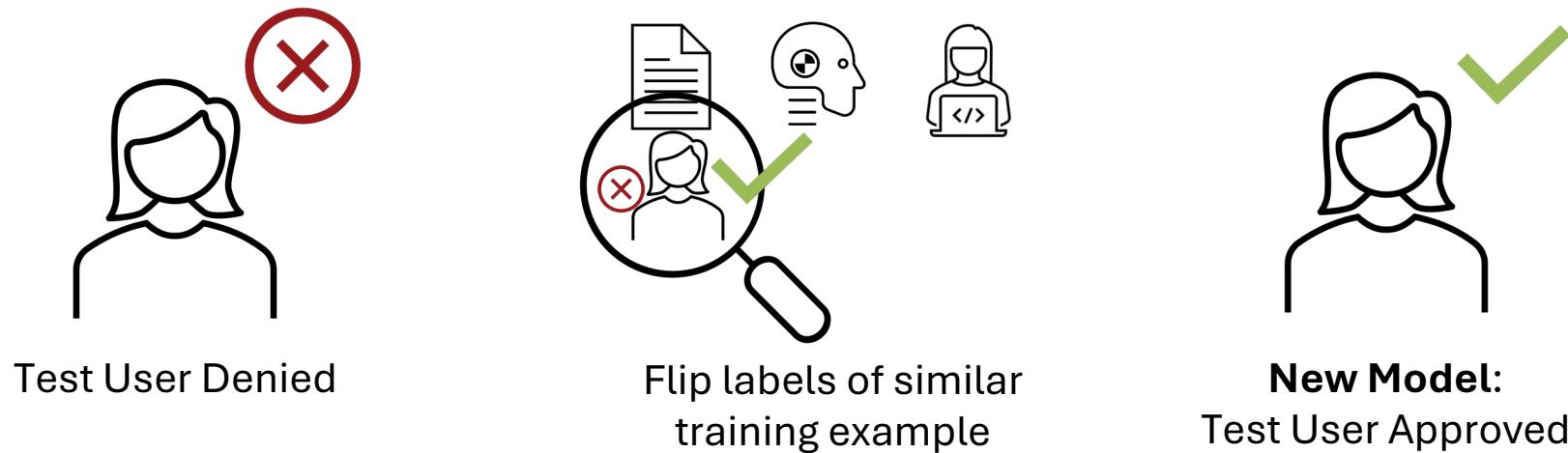
What if we change the **training datasets** counterfactually?



Counterfactual Dataset (CFD)

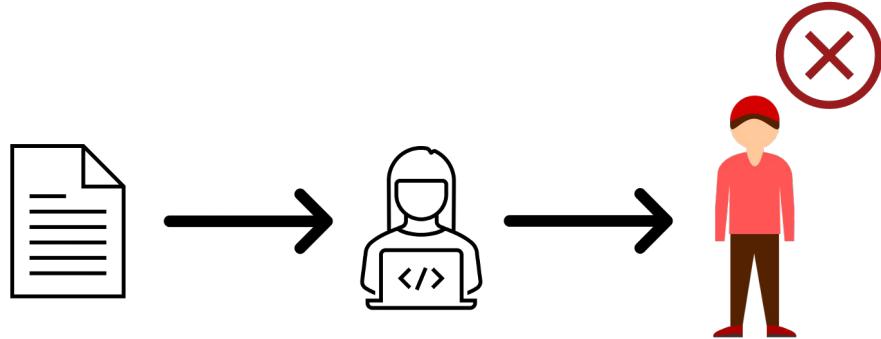


What if we change the **training datasets** counterfactually?

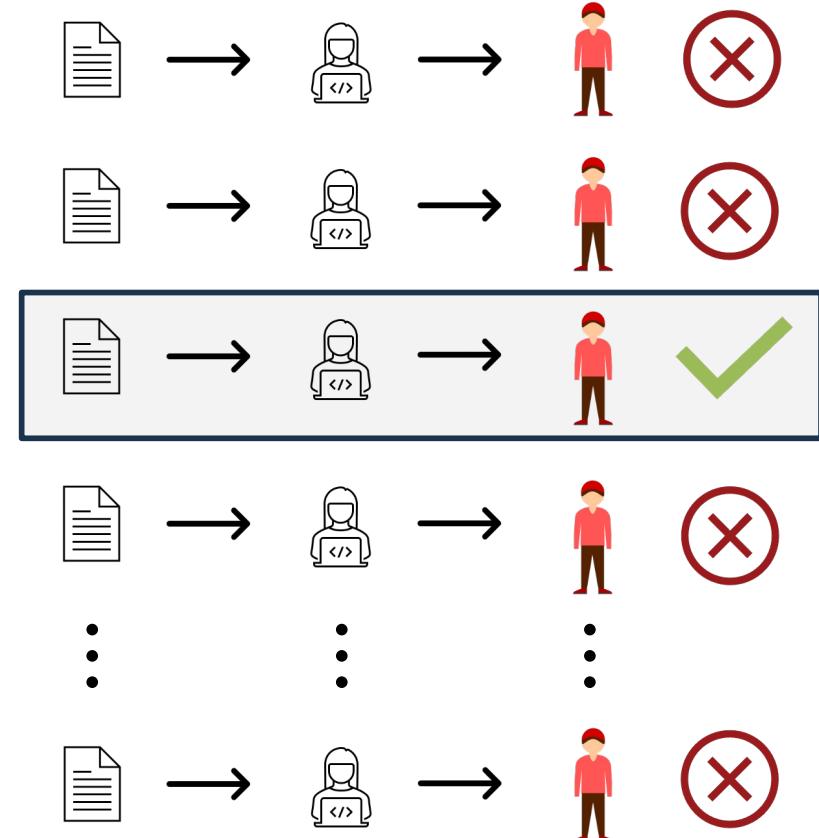


Counterfactual Dataset (CFD)

Original Dataset



Alternate Datasets



Counterfactual Dataset (CFD)

Naive enumeration?

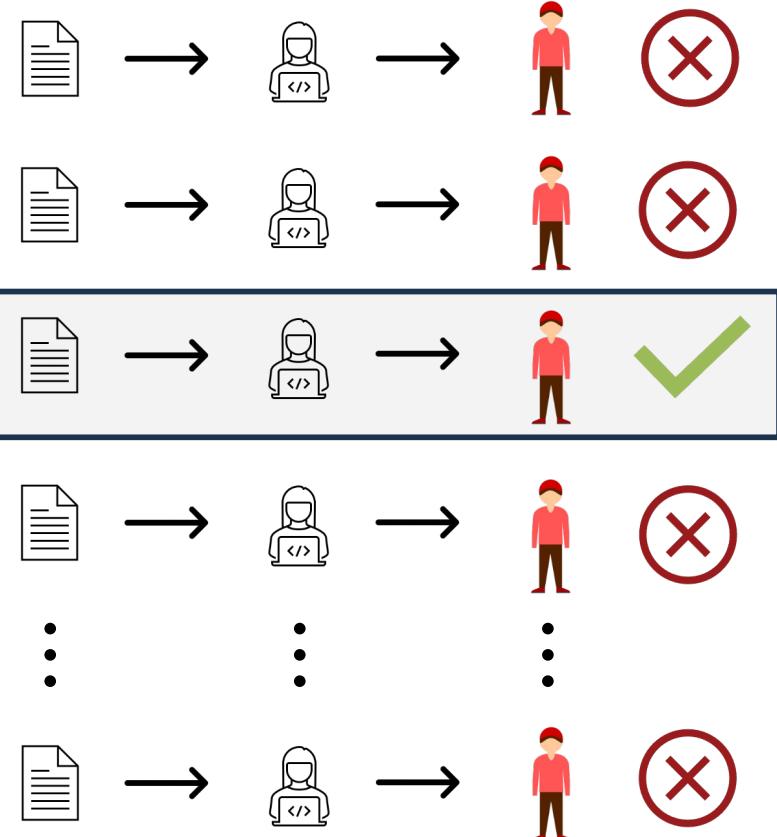
change up to m out of n training examples...

up to $(n \text{ choose } m)$ possible alternate datasets

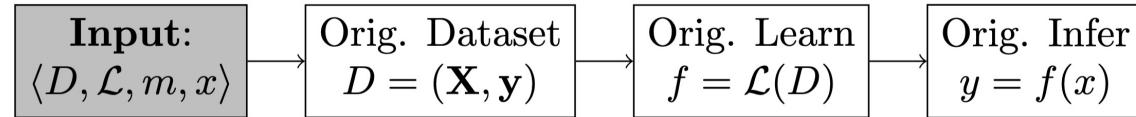
e.g., $n = 1000$, $m = 10$
 $\rightarrow 2.63 \times 10^{23}$

Worse-than-exponential blow-up!

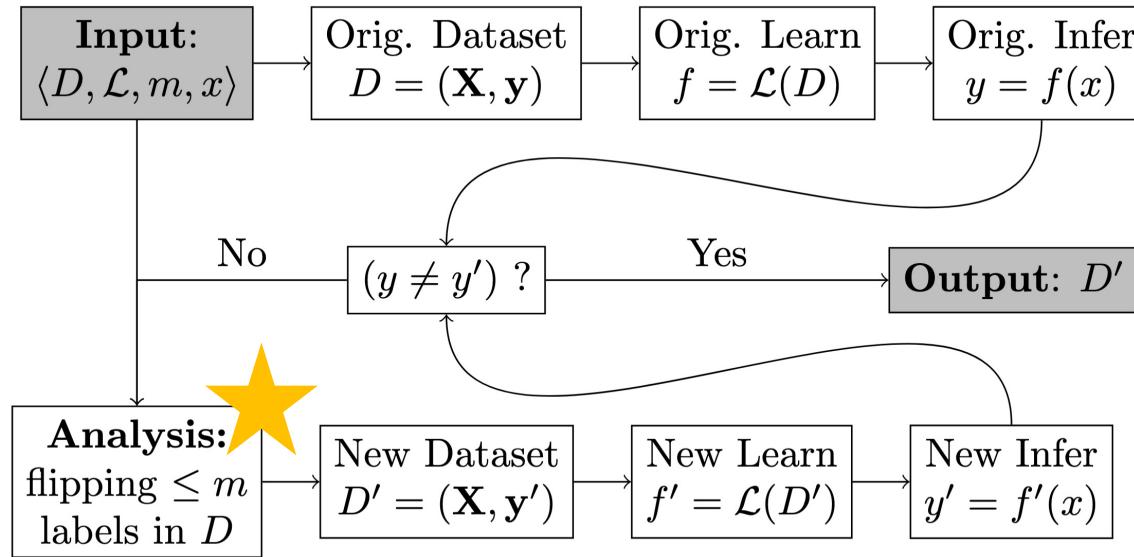
Alternate Datasets



Overview

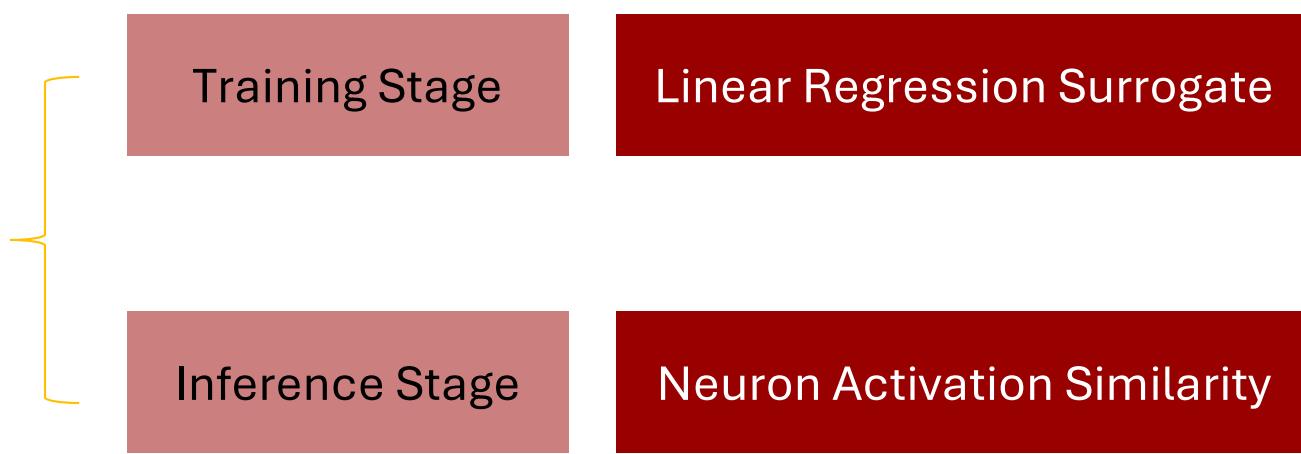


Overview

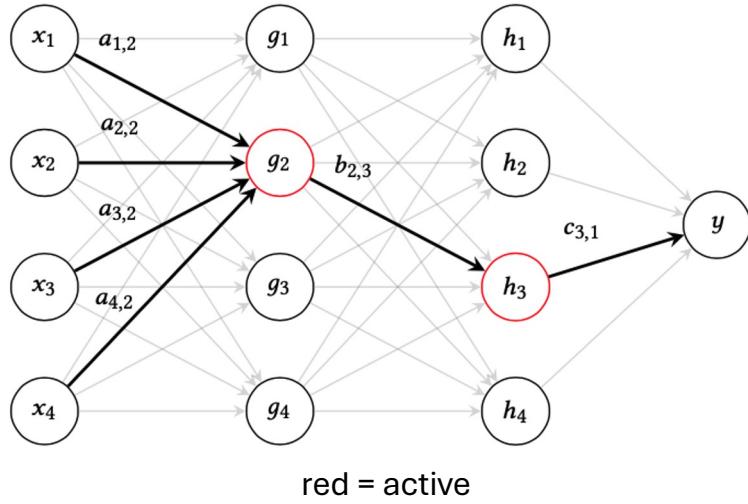


Our analysis: Rank the impact of training examples in D for the given x

Methodology



Methodology: Linear Regression



with ReLU activation function:

$$f(\mathbf{x}) = \begin{cases} \theta_1^\top \mathbf{x}, & \mathbf{x} \in D_1 \\ \vdots \\ \theta_p^\top \mathbf{x}, & \mathbf{x} \in D_p \end{cases}$$

[1] Meyer et al., "The Dataset Multiplicity Problem: How Unreliable Data Impacts Predictions". FAccT 2023.

Bypass training via a **closed-form solution**:

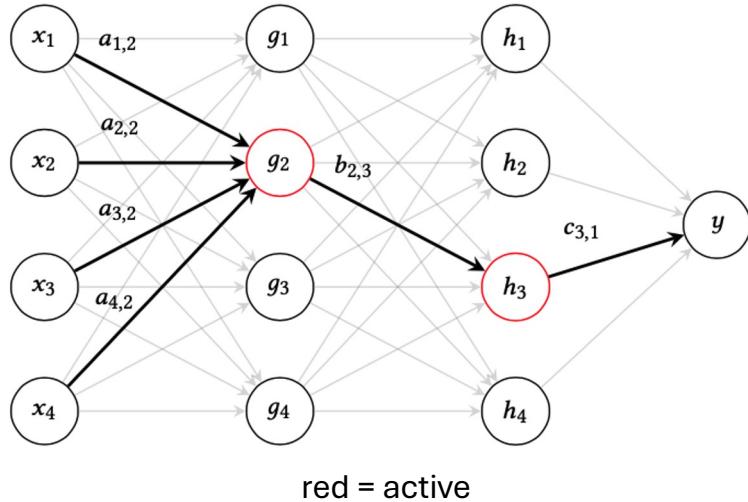
$$\theta = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$$

Prediction using closed-form solution:

$$y = \theta^\top \mathbf{x} = \mathbf{x}^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} = \mathbf{z}^\top \mathbf{y} = \sum_{i=1}^n z_i y_i$$

n training examples are sorted in **decreasing order** of their z_i score

Methodology: Neuron Activation



How **similar** are the test input and the training example in terms of activation?

$$\text{Sim}(\mathbf{x}, \mathbf{x}') = 1 - \frac{1}{d} \sum_{k=1}^d \mathbf{1}\{b_k(\mathbf{x}) \neq b_k(\mathbf{x}')\}$$

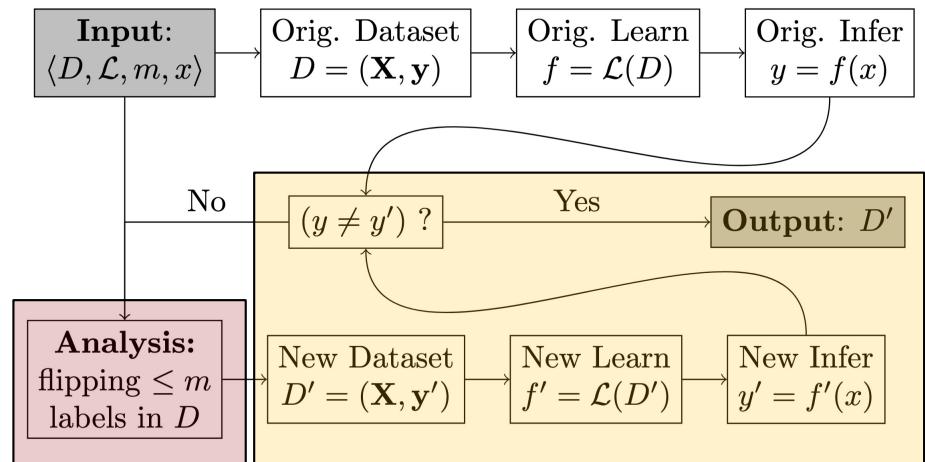
test input \mathbf{x} and training input \mathbf{x}'
 $b_k(\cdot) \in \{0, 1\} \rightarrow 0$ for inactive, 1 for active

n training examples are sorted in
increasing order of their *Sim score*

Methodology: Overall

Algorithm 1 Generating counterfactual dataset.

```
1: Input: dataset  $D = (\mathbf{X}, \mathbf{y})$ , learning algorithm  $\mathcal{L}$ , bias
   budget  $m$ , test input  $\mathbf{x}$ , filtering rules  $\phi$  and  $\psi$ 
2: Output: counterfactual dataset  $D' = (\mathbf{X}, \mathbf{y}')$ 
3:  $f \leftarrow \mathcal{L}(D)$ ;  $y \leftarrow f(\mathbf{x})$  {original model & prediction}
4: if not  $\phi(\mathbf{x})$  then
5:   return { $\mathbf{x}$  does not pass filtering by  $\phi$ }
6: end if
7:  $\mathbf{y}_L \leftarrow \text{LR\_SCORING}(\mathbf{X}, \mathbf{y}, \mathbf{x}, m)$  {Section 4.3}
8:  $\mathbf{y}_A \leftarrow \text{ACTIV\_SCORING}(\mathbf{X}, \mathbf{x}, f)$  {Section 4.4}
9:  $[y_1, \dots, y_{n_\psi}] \leftarrow \text{COMBINE\_SCORING}(\mathbf{y}_L, \mathbf{y}_A, \psi)$ 
   { $n_\psi$  = size of training set after filtering by  $\psi$ }
10:  $k \leftarrow 1$ 
11: while  $k \leq m$  do
12:    $\mathbf{y}' \leftarrow$  label set where  $y_1, \dots, y_k$  in  $\mathbf{y}$  are flipped
13:    $D' \leftarrow (\mathbf{X}, \mathbf{y}')$ 
14:    $f' \leftarrow \mathcal{L}(D')$ ;  $y' \leftarrow f'(\mathbf{x})$  {new model & prediction}
15:   if  $y \neq y'$  then
16:     return  $D'$  {CFD solution found}
17:   else
18:      $k \leftarrow k + 1$  {flip more labels in next iteration}
19:   end if
20: end while
21: return {solution not found}
```



Results: Experimental Setup

Datasets

- 7 popular fairness benchmarks
Salary, Student, German, Compas, Default, Bank, Adult

Network training

- PyTorch using Adam optimizer
- ReLU networks with 2x4 to 2x32 hidden neurons

Comparing baselines

- *Random sampling* and L_2 *distance*
- *Influence functions* [1-5] are not considered due to their limited scalability

[1] Deng et al., “dattri: a library for efficient data attribution”. NeurIPS 2024.

[2] Koh and Liang. “Understanding black-box predictions via influence functions”. ICML 2017.

[3] Martens. “Deep learning via Hessian-free optimization”. ICML 2010.

[4] Agarwal et al., “Second-order stochastic optimization for machine learning in linear time”. JMLR 2017.

[5] Schioppa et al., “Scaling Up Influence Functions”. AAAI 2022

Results: Research Questions

RQ1: Is it effective?

RQ2: Is it efficient?

RQ3: Is it meaningful?

RQ4: Is it robust?

Results: RQ1

RQ1: Is it effective?

Dataset	#	Our Method	Random Sampling	L_2 Distance
Salary	10	3/3*	1	3
Student	121	20/24*	13	10
German	182	38/38*	17	15
Compas	200	27	10	5
Default	200	18	5	8
Bank	200	24	9	11
Adult	200	44	15	15
Total	1,113	174	70	67

Table 1. Number of CFDs found by each method.

* indicates number of ground truth CFDs via exhaustive enumeration.

Results: RQ2

RQ2: Is it efficient?

Dataset	Our Method	Random Sampling	L ₂ Distance
Salary	0.04	0.00	0.01
Student	0.07	0.02	0.03
German	0.08	0.02	0.04
Compas	0.28	0.12	0.24
Default	2.91	1.52	4.32
Bank	3.22	1.72	5.04
Adult	5.73	3.26	9.35

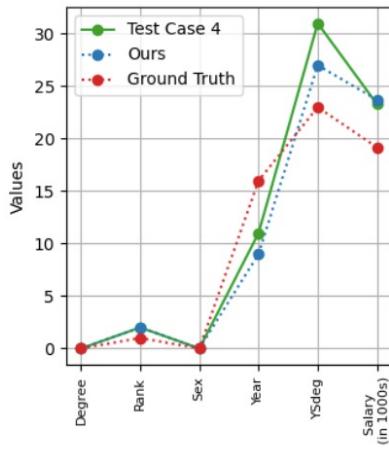
Table 2. Average non-training overhead per test input (in seconds).

Dataset	Our Method	Random Sampling	L ₂ Distance
Salary	0.35	0.31	0.32
Student	4.19	4.35	4.52
German	2.33	2.56	2.62
Compas	14.83	17.03	17.18
Default	133.82	134.34	122.55
Bank	123.53	143.85	142.38
Adult	195.81	206.90	206.32

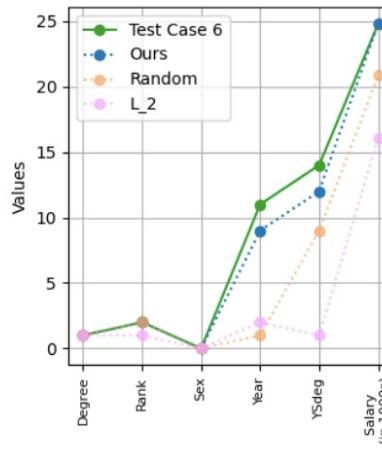
Table 3. Average runtime including retraining per test input (in seconds).

Results: RQ3

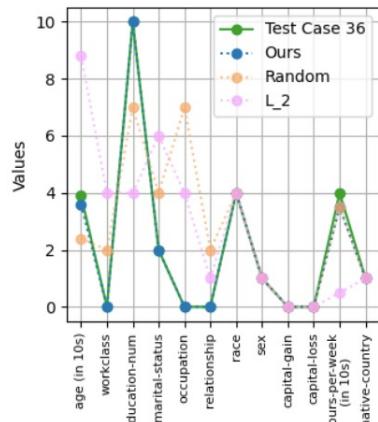
RQ3: Is it meaningful?



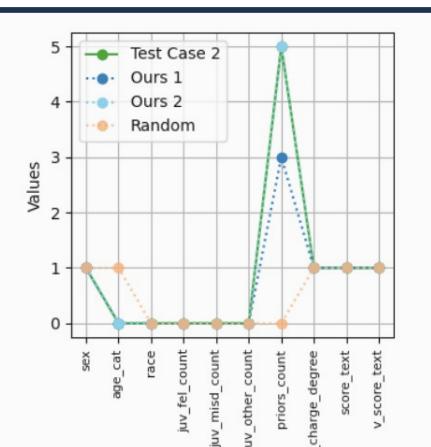
(a) Salary Test Case 4



(b) Salary Test Case 6

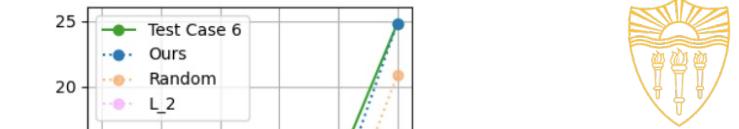


(c) Adult Test Case 36



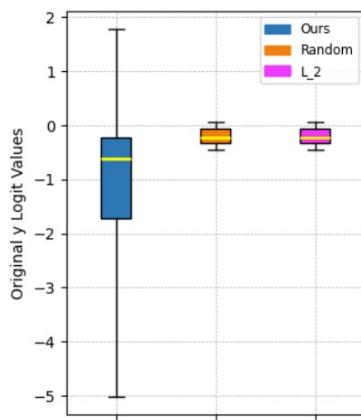
(d) Compas Test Case 2

Training examples identified by each method against the test case

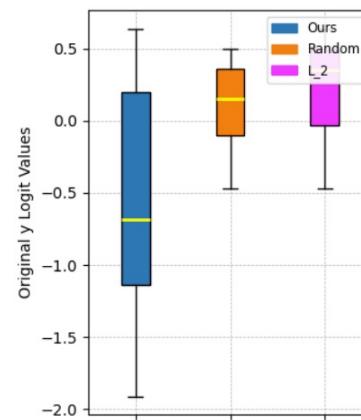


Results: RQ4

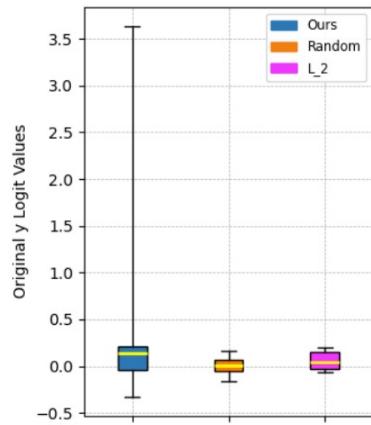
RQ4: Is it robust?



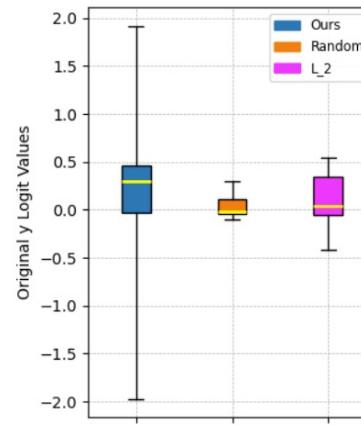
(a) Adult



(b) Bank



(c) Compas



(d) Default

Test cases around the decision boundary

Conclusion

1. Novel method to analyze neural network fairness using **counterfactual datasets**
2. Two heuristics to measure training example impact:
linear regression surrogate (training) and **neuron activation similarity** (inference)
3. Evaluate on diverse fairness datasets: **effective, efficient, meaningful, and robust**

Thank You!
Any Questions?

Project Links

Open
Review
.net

Brian Hyeongseok Kim
brian.hs.kim@usc.edu

